ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ФИЗИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ РОССИЙСКОЙ АКАДЕМИИ НАУК

УДК 547.96; 577.11 № госрегистрации

Инв. №

УТВЕРЖДАЮ
Директор ИФАВ РАН,
член-корреспондент РАН,
С.О.Бачурин
2014 г.

«МЕТОДИКА ИНСТРУМЕНТАЛЬНОГО АНАЛИЗА ДВИГАТЕЛЬНОЙ ФУНКЦИИ У МОДЕЛЬНЫХ ЖИВОТНЫХ В ТЕСТЕ ВРАЩАЮЩИЙСЯ СТЕРЖЕНЬ»

СТП-14.621.21.0008.03-2014

Ответственный исполнитель Заведующий лабораторией, к.б.н.

7 С.Г. Клочков 3 С» ремойря 2014 г.

Черноголовка, Московская обл. 2014

СОДЕРЖАНИЕ

1. Наименование методики измерений	3
2. Назначение методики измерений и область применения	3
3. Нормативные ссылки	3
4. Погрешность измерений	4
5. Требования к показателям точности измерений	4
6. Условия измерений	4
7. Требования к средствам измерений, вспомогательным устройствам,	
материалам, реактивам, применяемым для теста «вращающийся стержень».	4
7.1. Оборудование	4
8. Операции при выполнении измерений в тесте «вращающийся стержень» .	4
9. Обработка и оформление результатов измерений	6
10. Требования безопасности, охраны окружающей среды	7
11. Требования к квалификации операторов	7
Валидация методики инструментального анализа двигательной функции у	
модельных животных в тесте «врашающийся стержень»	8

1. Наименование методики измерений

Настоящий документ СТП-14.621.21.0008.03-2014устанавливает методику «Методика инструментального анализа двигательной функции у модельных животных в тесте вращающийся стержень»

2. Назначение методики измерений и область применения

Настоящая методика описывает процедуру использования теста «вращающийся стержень» для оценки состояния двигательной функции и координации движений животных путем удержания животного на вращающемся стержне.

Основными областями применения данной методики являются нейронауки (оценка состояния нервной системы модельных животных, установление стадии нейрональной патологии, разработка новых терапевтических средств).

3. Нормативные ссылки

В настоящей методике использованы нормативные ссылки на следующие стандарты и документы:

ГОСТ Р 8.563-2009 Государственная система обеспечения единства измерений. Методики (методы) измерений

СТП – 1.42.02 – 2002 Стандарты предприятия. Общие требования к построению, изложению, оформлению, содержанию, обозначению и порядку введения

ГОСТ 1.5—2001 Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Общие требования к построению, изложению, оформлению, содержанию и обозначению

ГОСТ Р ИСО 9000—2008 Системы менеджмента качества. Основные положения и словарь.

4. Погрешность измерений

Не устанавливаются.

5. Требования к показателям точности измерений

Неснижаемая численность животных для теста «вращающийся стержень», с учетом естественной убыли животных — 11 особей в каждой группе.

6. Условия измерений

Все животные тестируются 3 раза. Для статистической обработки используется среднее значение времени нахождения на стержне до падения.

7. Требования к средствам измерений, вспомогательным устройствам, материалам, реактивам, применяемым для теста «вращающийся стержень»

7.1.Оборудование

В исследовании «вращающийся стержень» необходим прибор, оснащенный вращающимся стержнем для мышей — диаметром 2,5 см и скоростью вращения 4 об/мин, со ступенчатым ускорением вращения с 4 до 40 об/мин

8. Операции при выполнении измерений в тесте «вращающийся стержень»

8.1Получить у руководителя исследования (ответственного исполнителя) список зашифрованных животных.

- 8.2. Животных перед экспериментом принести в комнату для исследований.
- 8.3. Взвесить первое животное и посадить на его на вращающийся стержень при минимальном уровне вращения.
- 8.4. Включить секундомер.
- 8.5. После падения животного выключить секундомер.
- 8.6. Наблюдать животное в течение 3-х попыток. Перерыв между попытками должен составлять не менее 30 мин.
- 8.7. Подписать бланк исследования, поставить дату выполнения эксперимента.
- 8.8. Результаты исследований предоставить руководителю исследования (ответственному исполнителю).

Клетки

Мыши по 11 особей в каждой группе рассаживаются в отдельные клетки микроизоляторы OneCage не более, чем по 5 штук в каждой при свободном подступе к воде и пищи.

Подстил

В качестве подстила используется лигноцель ВК-8-15 производства OOO «ФАРМВИЛАР».

Корм

Сбалансированный по пищевым веществам и витаминам комбикорм стерильный для СПФ животных - мышей и крыс торговой марки «Чара», производитель — Ассортимент-Агро, автокловированный при 121 °С. Должен быть сертификат соответствия производителя, удостоверение о качестве корма с указанием даты выпуска и срока годности. Потребление корма производится из расчета на одну мышь в сутки, по контрольному взвешиванию корма раз в неделю.

Вода

СТП-14.621.21.0008.03-2014

Вода центрального водоснабжения ГОСТ 52180 «Вода питьевая» очищенная от механических примесей, микроорганизмов, железа, хлора и токсических веществ и подвергается автоклавированию при 120 °C.

Параметры окружающей среды

Световой цикл состоит из 12 часов дня и 12 ночи, день начинается в 8 часов и заканчивается в 20 часов. Мыши содержатся в помещении, где температура воздуха составляет 18-24°C, влажность 40-70%.

Адаптация

Поступившие животные до начала эксперимента содержатся 5 дней для адаптации при групповом содержании в клетках. За это время у животных контролируются возможные признаки отклонения в состоянии здоровья.

Распределение по группам.

Животные распределяются по группам, используя в качестве критерия массу тела, индивидуальные значения массы тела не должны отклоняться более чем на $\pm 20\%$.

Идентификация

Животные индивидуально маркировались ушными клипсами суникальными номерами, кроме того, на каждой клетке с животными имеется карточка с указанием номера клетки, дозы вещества, вида и линии животных, номера исследования, номера протокола, руководителя.

Эвтаназия

В конце эксперимента животное подвергается медикаментозной эвтаназии путем внутрибрюшинного введения летальной дозы пентобарбитала натрия.

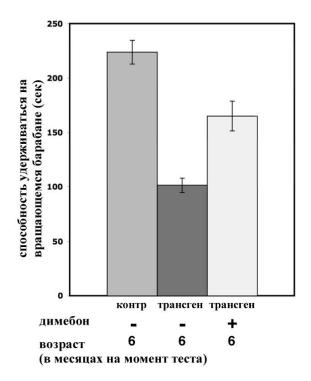
9. Обработка и оформление результатов измерений

Статистическая обработка осуществляться с использованием программного обеспечения STATISTICA 6.1, MSExcel 2007 и ImageJ. Первичная обработка, систематизация и архивирование данных осуществляется с помощью пакета MSExcel.

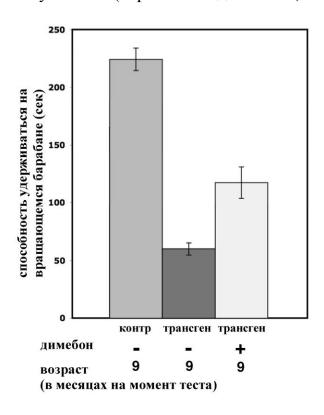
10. Требования безопасности, охраны окружающей среды

Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм установленных ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда – по ГОСТ 12.0.004.

При выполнении измерений необходимо соблюдать требования, изложенные в технической документации к приборам.


11. Требования к квалификации операторов

К выполнению измерений могут быть допущены штатные сотрудники, имеющие соответствующую профессиональную подготовку, опыт работы с лабораторными животными, прошедшие соответствующий инструктаж, освоившие метод в процессе тренировки.


Валидация методики инструментального анализа двигательной функции у модельных животных в тесте «вращающийся стержень»

Трансгенная мышиная модель гамма-синуклеинопатии была выбрана для изучения молекулярно-клеточного механизма действия препарата димебон. Гомозиготные трансгенные животные получали димебон с питьевой водой в концентрации 10 мкг/мл в свободном доступе. Животные были разбиты на две группы. Первая группа начинала принимать димебон в 3-х месячном возрасте, то есть до появления первых признаков нейрональной патологии. Вторая группа трансгенов начала получать димебон в 6-ти месячном возрасте, когда нейрональная симптоматика выявлялась не только с помощью инструментальных тестов, но и была очевидна.

Результаты анализа равновесия и координации модельных трансгенных животных по гену гамма-синуклеина на «вращающемся стержне» показали, что шестимесячные и девятимесячные гомозиготные трансгенные мыши, получавшие препарат димебон начиная с трёхмесячного возраста, были способны удерживаться на вращающемся стержне значительно дольше, чем трансгенные мыши, не получавшие этого препарата (Рисунок 1,2).

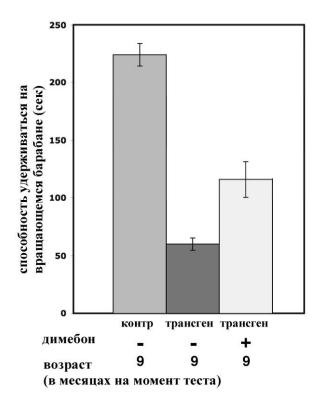


Рисунок 1 – Анализ равновесия и координации у 6-ти месячных мышей на вращающемся стержне, получавших димебон с 3-х месячного возраста. Представлены средние по группе значения, полученные при тестировании контрольных мышей, не несущих трансгена («контр – димебон», n=12), и трансгенных мышей, получавших («трансген + димебон», n=9) или не получавших («трансген – димебон», n=11) димебон.

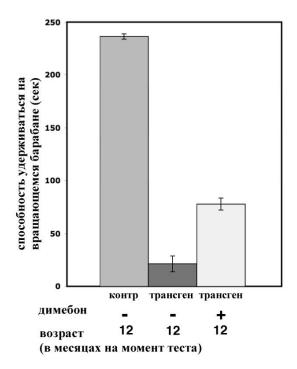


Рисунок 2 — Анализ равновесия и координации у 9-ти месячных мышей, на вращающемся стержне, получавших димебон с 3-х месячного возраста. Представлены средние по группе значения, полученные при тестировании контрольных мышей, не несущих трансгена («контр — димебон», n=12), и трансгенных мышей, получавших («трансген + димебон», n=9) или не получавших («трансген — димебон», n=11) димебон.

Сходные результаты были получены и для трансгенных животных, получавших димебон также в течение трёх или шести месяцев, но начиная с шестимесячного возраста (Рисунок3,4).

Рисунок 3 – Анализ равновесия и координации у 9-ти месячных мышей на вращающемся стержне, получавших димебон с 6-ти месячного возраста. Представлены средние по группе значения, полученные при тестировании контрольных мышей, не несущих трансгена («контр – димебон», n=12), и трансгенных мышей, получавших («трансген + димебон», n=9) или не получавших («трансген – димебон», n=11) димебон.

Рисунок 4 – Анализ равновесия и координации у 12-ти месячных мышей на вращающемся стержне со ступенчатым ускорением, получавших димебон с 6-ти месячного возраста. Представлены средние по группе значения, полученные при тестировании контрольных мышей, не несущих трансгена («контр – димебон», n=12), и трансгенных мышей, получавших («трансген + димебон», n=9) или не получавших («трансген – димебон», n=11) димебон.

В обеих результаты экспериментальных группах тестирования получавших димебон трансгенных животных с возрастом ухудшались и никогда не достигали уровня результатов, показанных контрольными, не несущими трансгена, животными (Рисунок 1, 2, 3, 4). Таким образом, применение димебона не предотвращает полностью, хроническое существенно замедляет развитие нарушений равновесия и координации, типичными проявлениями нейрональной патологии являющихся В использованной модели протеинопатии.