Effects of ALS-associated mutations on the in vivo aggregation and toxicity of human **FUS/TLS protein**

<u>Tatyana A. Shelkovnikova^{1,2*}, Inna V. Khritankova¹, Vladimir L. Buchman², Sergey O. Bachurin¹ and Natalia N. Ninkina^{1,2}</u>

¹Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, Russia ²School of Biosciences, Cardiff University, Cardiff, United Kingdom

Introduction

Multiple mutations in two genes encoding proteins involved in the intracellular RNA metabolism, maturation and transport, transactive response (TAR)-DNA-binding protein 43 (TDP-43) and fused in sarcoma/translated in liposarcoma (FUS/TLS), have been associated with **N** the development of familiar and sporadic forms ALS and FTLD-U. Moreover, both TDP-43 and FUS/TLS or their truncated forms were identified as major constituents of characteristic intracellular inclusions in the neuronal and glial cells of patients with familiar and sporadic forms of ALS and FTLD-U. However, neither the mechanism of these proteins aggregation nor the consequences of inclusion formation to brain cell physiology is known. To study the effect of FUS/TLS mutations associated with human neurodegenerative disorders on aggregation and toxicity of this protein in vivo we employed a cellular model system, SH-SY5Y human neuroblastoma cell lines expressing wild type or various mutated and truncated forms of FUS/TLS as eGFP fusion proteins.

NLS

NLS – nuclear localization signal **GR** – glycine rich region **RRM** – RNA recognition motif **NES** – nuclear export signal

Structure of the proteins studied

Constructs used in the study		Protein distribution				
			nuclea	r nuclear	cytoplasmic	cytoplasmic
Δ513-526	Cloning of mutated forms in	Mutatio	n diffuse	e aggregates	diffuse	aggregates
	\longrightarrow GFP \subseteq EGFP-C1 vector	WT (full-ler	gth) +	+	_	-
Δ 359-520		R518L	+	+	-	-
One of	four	R5241	+	+	-	- -
TDP-43 Δ3-192 mutati		R522G	-	_	-+	+
		∆513-52	6 -	_	_	+
	Biochemical	∆359-52	6 -	-	_	+
Toxicity studies studies	Studies SH-SY5Y neuroblastoma cells					
	SII-SI JI HEUIODIAStollia CElis	TDP-43/∆3-	- 192 +	+	+	+
FUS WT R518 R524T R525				Number of	cells with lost	
		adhesion ability				
		Time poir	Empty ve	ctor, cells per	0.1 FUS/TLS	∆359-526 ,
			μ	L±SEM	cells per 0	$0.1 \mu L \pm SEM$
				_		
		24 h	7.	0.08 ± 0.78	8.50	\pm 0.92
		48 h	6.9	92 ± 0.71	14.33	± 1.63
Δ513-526 FUS	$\Delta 359-526 FUS$ $\Delta 3-192 TDP-43$	HS	5 T-X100 R	IPA SDS	Figure 2 Fracti	onation
					and immunoblot	analysis of
		55KDa		∆3-192 TDP-43 t	ransfected SH-S	SY5Y cells
					with EGFP-C1 v	ector with
		70kDa		(carrying the inse	ertion of
				∆359-526 FUS	corresponding p	rotein –
		100kDa		and the second s	-US/ILS or IDF	-43 -
	▶──── ↓		2.4	∆513-526 FUS f	evealed delerge	S protoin
Figure 1 Distribution of TDD 42 and EUS/TLS and m	arphological types of aggregates formed by				and determent-so	S protein
these two proteins in SH-SY5Y neuroblastoma cells un	on transfection with corresponding construct	100kDa			nsoluble forms of	of highly
Green – protein+GFP: blue – DAPI	on transfection with concepting construct.			r03 wi	runcated TDP-4	3 protein.
		100kDa				•
	Figure 3 Highly truncated form of FUS/TLS (A359-			R525L	HS – high salt b	uffer
	526) lacking both nuclear localization and nuclear				(soluble forms),	T-X100 –
	export signals as well as most of the RNA-recognition motif. Mutated protein is completely depleted from the	100kDa		H	HS buffer +Trito	n X-100,
	nucleus and forms cytoplasmic aggregates			R522G	SUS – Laemmli	
	immediately after synthesis (the aggregates could be detected in the colle over in 4 hours after transfaction)	100kDa			iving colors (1	-rage. nvitrogon)
	indicating strong ability to aggregate for this form. The			R518L	antihodies were	used for
	form was significantly more cytotoxic for cells				GFP-labelled pro	otein

Red - β-actin; green - FUS/TLS (Δ359-526)-GFP; blue - DAPI.

Figure 4 Anti-ubiquitin immunofluorescent labelling

of SH-SY5Y transfected with highly truncated form of

192 did not reveal ubiquitination neither cytoplasmic

FUS/TLS (Δ 359-526) and truncated form of TDP-43 Δ -

This may be due to the fact that ubiquitination of TDP-

43- or FUS-positive inclusions is a late event whereas

transfected cells were fixed and immunolabeled within

Red - β-actin; green - FUS/TLS (Δ359-526)-GFP or

100kDa

detection. R524T

Conclusions

1. In the studied model system inclusions formed by pathological variants of FUS/TLS and TDP-43 are different, suggesting that they might have differently affects cell functions.

2. Our results confirm that as it has been predicted according to the sequence homology NLS in FUS/TLS includes residues 514-526. Loss of this sequence leads to protein depletion from the nucleus.

3. Localization studies showed that some of the mutations in NLS of FUS protein partially or completely abolish nuclear localization (i.e. R525L, R522G) while others do not (R524T, R518L). Similarly, compared to WT protein R524T, R518L and R522G do not affect mutant protein propensity to aggregate whereas R525L increased this ability. C-terminal truncation of FUS (Δ 359-526) not only abolishes nuclear localization of FUS but also strongly increases mutant protein propensity to aggregate.

4. N-terminal truncated form of TDP-43 (Δ 3-192) is able to form both nuclear and cytoplasmic inclusions which appear to be detergent-insoluble in fractionation studies.

5. Truncated \triangle 359-526 FUS/TLS is highly cytotoxic for cells.

6. Aggregates formed by both truncated forms, \triangle 359-526 FUS/TLS and \triangle 3-192 TDP-43, seem not to be ubiquitinated.

Results of our studies suggest that although pathological changes in TDP-43 and FUS/TLS structure and function lead to the same clinical manifestations, molecular and cellular mechanisms underlying the development of neurodegeneration might be different.

*Corresponding author: 142432, 1 Severnyi proezd, Moscow region, Chernogolovka, IPAC RAS. Tel +79150999004. E-mail: sta.ipac@gmail.com.

References

Acknowledgements and Support

1. Vance C et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009 Feb 27;323(5918):1208-11. 2. Lagier-Tourenne C, Cleveland DW. Rethinking ALS: the FUS about TDP-43. Cell. 2009 Mar 20;136(6):1001-4.

3. Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M.Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet. 2009 Sep 15;18(18):3353-64.

TDP-43 \triangle 3-192-GFP; blue - DAPI.

nor intranuclear inclusions.

24 h after transfection.

The research was supported by the Russian Foundation for Basic Research grants № 09-04-01412-a and the project Russian Academy of Sciences of "Fundamental Sciences Medical for Research". Travel grant?